
Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses
Supporting Information

Text S1: Proof that kp is a positive semidefinite kernel
We must show that kp is positive semidefinite in order to rigorously use it in kernel-based machine
learning algorithms. First, we need some notation. Let knG : Rn × Rn −→ R denote the Gaussian
radial basis function (RBF) kernel on Rn: if x, x′ ∈ Rn,

knG(x, x′) = exp

(
−d(x, x′)2

2σ2

)

where d is the usual Euclidean distance in Rn and σ2 is the variance parameter. To clean up our no-
tation we will omit the superscript n from knG when it is clear from the parameters what dimension
we are working in. Recall that our kernel kp(T1, T2) is defined as

∑
n1∈N(T1)

∑
n2∈N(T2)

∆(n1, n2).
To get a handle on the intuition behind this kernel, first observe that ∆(n1, n2) returns the sum of
the Gaussian RBF kernel distances between the branch lengths of every pair of common subset
trees rooted at n1 and n2. This uses the fact that

kmG ((x1, . . . , xm), (x′1, . . . , x
′
m)) knG((y1, . . . , yn), (y′1, . . . , y

′
n))

= km+n
G ((x1, . . . , xm, y1, . . . , yn), (x′1, . . . , x

′
m, y

′
1, . . . , y

′
n)).

Thus kp returns the sum of the Gaussian RBF kernel distances between the lengths of every subset
tree common to T1 and T2.

In order to show that kp is positive semi-definite, it suffices to show that kp(T1, T2) may be
written as an inner product in some linear space which we map the trees to. Similar to the subtree-
and subset tree-kernels used in natural language processing [1], we use a mapping that maps a tree
to an element that summarizes aspects of the tree. First, a technical detail: as with any positive
semidefinite kernel, the Gaussian RBF kernel in n dimensions may also be interpreted as an inner
product on a vector space Gn after elements of Rn have been mapped to Gn via some mapping
which we will call ψRBF (again, we omit mentioning n as it will be clear from the parameters what
dimension we mean). This space is comprised of functions satisfying some constraint on their
Fourier transforms [2]. We will use the spaces Gn frequently in the construction of our summary
space A.

Let a feature refer to a certain tree shape, ignoring branch lengths for the time being. A tree
is said to have a feature if this tree shape exists as a subset tree within the tree, regardless of the
branch lengths of the feature. Let F be the set of all possible tree features. (For convenience,
we can take this set to be finite since we will only ever deal with two finite trees at a time.) The
summary space A is defined as

A =
{

maps (F, k) 7→
(
G|F |
)k, where F is a feature and k ∈ N

}
;

in other words, maps from features to vectors of elements of G|F |. Let γ be our mapping from
trees into A; we define it as follows. If a feature F occurs within a tree T exactly k times, then
γ(T )(F, k) will be a k-vector of elements of G|F |. Each element of this vector corresponds to one
occurrence of F : it represents its branch lengths under the mapping ψRBF. For any other n 6= k,

AFY Poon et al. 1



Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses
Supporting Information

γ(T )(F, n) = 0, where we use 0 to denote the 0 element of Gk|F |. Similarly, for any feature F ′

that doesn’t exist in the tree, γ(T )(F ′, ·) ≡ 0. Note that under our mapping, we will never get an
element of A with more than one non-zero value in (F, 1), (F, 2), . . ., since a tree cannot contain
a feature exactly k times for more than one value of k. However, we need to define A this way in
order for it to be an appropriate vector space.

It can be shown that A is a real vector space; it remains to define an inner product on A. Let
λ, µ ∈ A. We define

λ ∗ µ =
∑
F∈F

∑
k1∈N

∑
k2∈N

k1∑
i=1

k2∑
j=1

〈λ(F, k1)i, µ(F, k2)j〉G|F | ,

where 〈·, ·〉G|F | is the inner product in G|F |. The properties of an inner product follow from the fact
that 〈·, ·〉G|F | is an inner product.

This inner product is only intended to be meaningful when applied to elements in the image
of γ, so we consider this case more closely. Recall that for a given tree T , we can never have
γ(T )(F, k) and γ(T )(F, k′) both non-zero when k 6= k′. Let T1 and T2 be trees, and say that the
number of times a feature F occurs in Ti is ki,F . In this case, the sum reduces to

γ(T1) ∗ γ(T2)

=
∑
F∈F

k1,F∑
i=1

k2,F∑
j=1

〈γ(T1)(F, k1,F )i, γ(T2)(F, k2,F )j〉G|F |

=
∑
F∈F

k1,F∑
i=1

k2,F∑
j=1

kG((ith occurrence of F in T1), (ith occurrence of F in T2)).

This sum includes a term for every pair of subset trees common to T1 and T2, and thus it equals
kp(T1, T2) as defined by equation (1) in the main text. This shows that kp(T1, T2) = γ(T1) ∗ γ(T2),
and thus is positive semidefinite.
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